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ABSTRACT

Wavelet image compression is a popular paradigm for lossy
and lossless image coding, and the wavelet transform, quanti-
zation, and entropy encoding steps are well studied. Efficient
implementation is straightforward for the first two steps us-
ing e.g. lifting and uniform scalar deadzone quantization, but
entropy encoding is typically carried out using complex con-
text modeling and arithmetic coding. We propose a simple
entropy encoding scheme for wavelet coefficients based on
limited-length Golomb-Rice codes, and we propose two sim-
ple context schemes for selecting the Golomb parameter; one
slightly faster than the other. We also propose a simple so-
lution to the rounding problem in integer wavelet transforms,
allowing the use of integer transforms for both lossless and
lossy compression instead of resorting to floating point. If the
input is Bayer patterned data, we include an additional lifting
step allowing lossy compression without demosaicing. We
demonstrate that a straightforward implementation of a com-
plete codec in under 1000 lines of C++ is several times faster
than JPEG 2000 while producing similar file sizes, without
sacrificing certain desirable features such as downsampled de-
coding and progressive decoding of incomplete data streams.

Index Terms— Wavelets, image compression, JPEG 2000,
Golomb-Rice codes, Bayer pattern compression.

1. INTRODUCTION

Wavelet image compression generally follows three steps:
wavelet transform, quantization, and entropy encoding [6].
Decompression consists of the reverse steps: entropy de-
coding, dequantization, and inverse transform. Many image
compression-decompression libraries, or codecs, have been
described in the literature using wavelets, e.g. EZW [11] and
SPIHT [10]. By far the most popular standard is JPEG 2000
[14], which enjoys several open source implementations in-
cluding OpenJPEG [2] and JasPer [1]. Though popular, the
JPEG 2000 standard is complex, and some effort has been
made to propose standards that are computationally simpler
yet retain most of the benefits of JPEG 2000, for example
the CCSDS recommendation [16]. In this work, we propose
a simple wavelet image compression pipeline that is several
times faster than JPEG 2000 while producing similar sizes.

Our proposed pipeline uses only integer arithmetic, without
the rounding problems typically associated with integer lossy
wavelet encoding. We provide an implementation in under
1000 lines of C++ source code using only standard C++
libraries, with many of the features that make JPEG 2000
attractive including optional downsampled decoding, and
progressive decoding of incomplete data streams. Sections
2 through 5 describe the steps of our proposed pipeline, and
Section 6 discusses the implementation and evaluation.

2. INTEGER COLOR TRANSFORM

Our pipeline begins with an optional user-programmable
color transform. Let the input data represent one or more
non-interleaved image layers, each pixel having one or more
interleaved channels. The memory layout of the data is hence
ordered by layers, then rows, then columns, and finally inter-
leaved channels. Conceptually, each spatial image location
has one data value per layer per interleaved channel, which
we collectively call channels. We support any transform that
can be expressed as a sequence of steps of the following form:

Ci ← Ci + b 1s
n∑

t=1

ktCjtc↓0, (1)

whereCi is the value of channel i, s is an integer divisor, jt 6=
i are summand channel indices, kt are integer weights, and
bxc↓0 = sign(x)b|x|c represents rounding towards zero. This
general form is trivially reversible, and allows many popular
color transforms to be implemented. For example, the YUV
transform can be implemented for RGB input as:

C0 ← C0 + b−C1c↓0;
C2 ← C2 + b−C1c↓0;

C1 ← C1 + b 14 (C0 + C2)c↓0, (2)

and the A7,10 transform [12] can be implemented as:

C0 ← C0 + b−C1c↓0;
C2 ← C2 + b 12 (−C0 − 2C1)c↓0;

C1 ← C1 + b 18 (3C0 + 2C2)c↓0. (3)



During encoding, the result of the color transform is stored in
a temporary buffer with a larger integer precision than the in-
put data, which facilitates later steps that produce intermedi-
ate values having additional bits of dynamic range. For exam-
ple, 8-bit data is transformed into a 16-bit temporary buffer,
and 16-bit data is transformed into a 32-bit temporary buffer.

3. INTEGER WAVELET TRANSFORM

After the color transform, we apply an in-place lifting scheme
[13] to compute the wavelet transform per channel. Like
JPEG 2000, we recommend using the 5/3 wavelet for lossless
encoding, and the 9/7 wavelet for lossy encoding, however
we support both modes for both encoding types. Normally,
the 9/7 wavelet transform is implemented for lossy encoding
using floating-point arithmetic, because integer wavelet trans-
forms based on lifting suffer from a rounding problem, where
rounding of residuals prevents proper smoothing of low fre-
quency values. We solve this using what amounts to fixed
point arithmetic, without any impact on encoding or decod-
ing speed. We simply multiply the input values by 8, which
we fold into the color transform step. The extra 3 bits of pre-
cision is enough to smooth the low frequency values. Using
a value greater than 8 is also possible, but may cause integer
overflow in our implementation of the 9/7 wavelet transform.
After the transform, we divide the output by 8, which we fold
into the quantization step. We employ this scheme for both
5/3 and 9/7 wavelets, but only for lossy compression, as it is
not strictly reversible. We additionally clamp the cubic pre-
dictions of the 9/7 wavelet transform to lie within the range
defined by the two center samples of the cubic, which reduces
ringing artifacts and slightly improves compression. If the in-
put is Bayer patterned data, it is known that the first level of a
wavelet transform effectively decorrelates the color channels
into the LL, LH, HL, and HH subbands [17, 5], however the
LH, HL, and HH subbands still exhibit significant spatial cor-
relation. Therefore in the case of Bayer data we repeat the
entire wavelet transform on the first-level LH, HL and HH
subbands, improving decorrelation and hence compression.

4. QUANTIZATION

After the wavelet transform, lossy compression may be
achieved by quantizing the coefficients. We employ uniform
scalar deadzone quantization (USDQ) [8]:

cx,y ← bQx,ycx,yc↓0, (4)

where Qx,y = max(qmin,min(qmax, 2
Lx,yq))/qmax, cx,y is

the coefficient at location (x, y), qmin is the minimum qual-
ity, qmax is the maximum quality, q is the user-selected quality
parameter, and Lx,y is the wavelet transform level at location
(x, y), where the finest level has L = 0 and coarser levels
have L > 0. A form of chroma downsampling can be effected

by using a smaller value of q for channels that are flagged as
chroma, for example qchroma = bqluma/dc for some d ≥ 1. In
the case of Bayer data, the LL, LH, HL, and HH subbands
of the first transform level are treated as four separate chan-
nels, allowing lossy compression without demosaicing. The
LH, HL, and HH subbands are considered chroma, but as they
contain some residual luma we let qmin = qluma.

5. ENTROPY ENCODING

After quantization, we encode the wavelet coefficients in level
order, starting from the DC coefficient. Within each level, we
divide the pixels into blocks that are 2b pixels on each side
for some user-selected b. We encode blocks in scanline or-
der, and we encode the channels within a block sequentially
and independently. This allows the encoding task to be di-
vided into a number of parallel encoding subtasks equal to the
number of blocks times the number of channels, called block-
channels. Since the length of the encoded block-channels
is unknown beforehand, we divide the remaining encoding
buffer into equal parts on word boundaries and encode each
block-channel into its own part. For each block-channel, we
encode wavelet coefficients in scanline order using limited-
length Golomb-Rice codes as described in Subsections 5.1
and 5.2. After encoding, we tightly pack the encoded block-
channels in sequence, exploiting the word alignment of the
encoded buffers for efficiency. For speed and simplicity, we
encode whole coefficients instead of multiple bitplane passes,
which means we lose the embedded encoding property preva-
lent in most wavelet image codecs. While embedded encoders
are progressive in quality (where each transmitted bit opti-
mally improves a quality measure such as PSNR), our pro-
posed encoder is progressive in resolution (where each trans-
mitted level doubles the resolution of the decodable image).
We argue that this is a desirable feature for today’s so-called
responsive media applications, where a variety of devices may
request different resolutions from a single image resource.

5.1. Limited-Length Golomb-Rice Codes

We encode the wavelet coefficients in a block-channel us-
ing limited-length Golomb-Rice codes [9], or zero run codes
when the probability of zero is high. Golomb-Rice coding
with zero runs is popular for encoding prediction residuals in
e.g. JPEG-LS [15], and we find them equally effective for en-
coding wavelet coefficients. Rather than constructing a cus-
tom code table based on symbol statistics as in Huffman cod-
ing, Golomb coding implements a computationally simple
code with just one free integer parameter, called the Golomb
parameter. An integer x ≥ 0 is encoded as the unary repre-
sentation of bx/mc (so many zeros followed by a one) fol-
lowed by the binary representation of x mod m, where m
is the Golomb parameter. Golomb-Rice codes are Golomb
codes wherem is a power of two, which admit extremely sim-
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Fig. 1. Schematic of the neighborhood used to compute the con-
text. The coefficient is shown as a black square, and the neighbors
are shown as numbered squares (numbers represent relative weight),
including eight neighbors in the same subband, two neighbors in the
neighboring subbands, and one neighbor in the parent band. Only
neighbors that precede the coefficient in scanline order may be used.
For clarity, we show the wavelet decomposition in Mallat configura-
tion, though our implementation uses an in-place transform.

ple implementations using bit operations. Due to the unary
part, the length of a Golomb code can be quite large if m is
small relative to x. In such a case, it is customary to choose
a limit l on the value of bx/mc, and use this limit to signal
an escape to raw binary encoded data. For example, suppose
x were a 32-bit value, and bx/mc ≥ l, then one would emit
l zeros signifying an escape, and then emit x in binary using
32 additional bits. This limiting scheme has several deficien-
cies: it requires advance knowledge of the range of x; it is
redundant as any x < lm has two representations; and the
implied probability distribution changes abruptly from geo-
metric to flat at the limiting threshold. We propose instead a
more gradual limiting scheme. Simply, if bx/mc ≥ l, then
we emit l zeros to signify an escape, and then we recursively
encode x− lm using a larger modulus (we found 16m works
well). The advantages of this technique are that the range of
x need not be known; every x has exactly one representa-
tion; and the implied probability distribution flattens gradu-
ally as x increases, which improves compression in our tests.
For signed data, such as wavelet coefficients, two schemes
are common. The first is to interleave positive and negative
values in sequence, i.e. 0, 1,−1, 2,−2, . . . and encode the in-
dex of x in this sequence, which we call interleaved codes.
The second is to encode |x| followed by a sign bit if x 6= 0,
which we call signed codes. We note that the implied proba-
bility distribution differs between these two schemes, and so
rather than choosing one over the other, we use both. We
encode zero run lengths using Golomb-Rice codes, and we
encode wavelet coefficients using either interleaved Golomb-
Rice codes or signed Golomb-Rice codes. Switching between
these three methods and selecting the Golomb parameter in
each case is described in the next subsection.

5.2. Selecting the Golomb Parameter

Optimal selection of the Golomb parameter m is possible if
the data comes from a geometrically distributed source with

Algorithm 1 Map (µ̂1, µ̂2) to coding method, with B0 = 2µ̂2 +
100, B1 = 2µ̂2 + 250, B2 = 2µ̂2 + 950, B3 = 3µ̂2 + 3000,
B4 = 5µ̂2 + 400, B5 = 3µ̂2 + 12000, B6 = 5µ̂2 + 3000, B7 =
4µ̂2 + 44000, and B8 = 6µ̂2 + 12000.

if (is luma and µ̂2
1 < B0) or (is chroma and µ̂2

1 < B1) then
use interleaved code with m = 1

else if µ̂2
1 < B2 then use interleaved code with m = 2

else if µ̂2
1 < B3 and µ̂2

1 < B4 then use signed code with m = 2
else if µ̂2

1 < B3 then use interleaved code with m = 4
else if µ̂2

1 < B5 and µ̂2
1 < B6 then use signed code with m = 4

else if µ̂2
1 < B5 then use interleaved code with m = 8

else if µ̂2
1 < B7 and µ̂2

1 < B8 then use signed code with m = 8
else if µ̂2

1 < B7 then use interleaved code with m = 16
else use signed code with m = 16

known mean µ [7]. A popular selection strategy that is al-
ways close to optimal is to letm = 2k where 2k ≤ µ < 2k+1.
However, the distribution of wavelet coefficients in real-world
images is not strictly geometric, and therefore we propose a
scheme based on the first moment µ1 = E[|x|] and second
moment µ2 = E[x2], to capture richer distribution character-
istics. We propose two methods to estimate (µ1, µ2). The
first method is to examine a neighborhood around a coeffi-
cient shown in Fig. 1, and compute the following estimates:

µ̂1 = round

(
16∑

i∈N wi

∑
i∈N

wi|yi|

)
;

µ̂2 = round

(
16∑

i∈N wi

∑
i∈N

wi min(4096, |yi|)2
)
, (5)

where N is the set of neighbors that exist considering image
boundaries and scanline order precedence, yi is the coefficient
at the ith neighbor, and wi is its weight. Scaling the moments
by 16 lets us use integer arithmetic, and limiting the values
to 4096 avoids overflow later on. The second method, which
is somewhat faster but less effective, is to update a running
estimate of the two moments after each value x is encoded:

µ̂1 ← round
(
15
16 µ̂1

)
+ |x|;

µ̂2 ← round
(
15
16 µ̂2

)
+min(4096, |x|)2. (6)

We call (µ̂1, µ̂2) the context of the current coefficient. To de-
sign a mapping from context to coding method, we collected
all the wavelet coefficients belonging to each context using
(5) over the Kodak lossless true color image suite [3] and sev-
eral photographs of cats collected from the Internet. We then
found the best method for each context by brute force, com-
pressing the coefficients using both interleaved and signed
codes with power-of-two Golomb parameters ranging from
1 through 16. After inspecting the distribution of best coding
methods over the context landscape, we designed a partition-
ing of the landscape using quadratic boundaries, described in
Algorithm 1. We also use quadratic boundaries on (µ̂1, µ̂2) to



Table 1. Lossless compression results (bytes) for our method vs.
JPEG 2000. (Y) indicates a grayscale version of the image, using
only the luma channel. Best sizes are highlighted in bold.

Image Ours JP2K Ours(Y) JP2K(Y)

Kodak01 513,752 510,526 263,412 267,235
Kodak02 465,084 450,482 202,704 207,203
Kodak03 398,544 397,835 173,972 175,538
Kodak04 463,872 460,159 202,332 206,711
Kodak05 532,040 531,776 255,936 260,523
Kodak06 475,884 471,536 231,788 233,317
Kodak07 419,540 418,095 184,804 185,476
Kodak08 554,260 547,613 269,668 271,490
Kodak09 454,500 445,098 195,764 196,662
Kodak10 459,748 453,211 198,564 201,113
Kodak11 460,076 456,826 220,736 223,955
Kodak12 423,244 425,654 192,124 193,588
Kodak13 581,164 583,094 293,760 300,050
Kodak14 500,804 499,524 243,224 247,866
Kodak15 440,072 442,318 192,404 195,095
Kodak16 433,860 431,410 203,664 205,678
Kodak17 453,940 451,947 202,220 207,277
Kodak18 549,572 546,925 247,108 252,670
Kodak19 493,036 482,870 221,572 223,442
Kodak20 405,004 397,111 180,740 181,948
Kodak21 487,132 479,938 225,624 228,514
Kodak22 503,516 496,250 223,064 226,958
Kodak23 421,288 418,135 171,516 173,523
Kodak24 497,996 499,855 231,464 236,302
Cats 17,838,708 18,440,076 7,818,056 7,875,114

decide when to use zero run coding, and to select the Golomb
parameter for encoding the zero run length. (Please see the
source code for details.) If we encode a zero run, the next
coefficient cannot be zero, and so we add one to the next co-
efficient if it is negative. This slightly improves compression.

6. EVALUATION AND DISCUSSION

Though we describe only the compression pipeline, con-
structing the decompression pipeline is straightforward, by
reversing the steps. We implemented the proposed com-
pression pipeline and corresponding decompression pipeline
using C++11 templates, to facilitate customizing the data
source and to support 8- and 16-bit signed and unsigned data
without extra code. The entire implementation is under 1000
lines of C++11 in a single header file with no dependencies
besides standard C++ libraries. We invite the reader to view
the code at http://www.gfwx.org, and indeed to use
the code as it is released under the 3 clause BSD license. We
evaluated our method on the Kodak lossless true color image
suite [3] and a large image comprising several photographs
of cats collected from the Internet [4]. Table 1 lists lossless
compression results for our method vs. the JasPer JPEG 2000
library [1] for the original color images and for grayscale
versions of the same. For all color images, we employed the
A7,10 color transform [12] as it produced smaller overall size
than other transforms we tried. We employed the somewhat
slower context method from (5), which is still substantially

Table 2. Lossless timings on the large image of cats.
Method Size (bytes) Encode Time Decode Time

Ours (slow, large block) 17,838,708 5.1s 6.1s
Ours (slow, small block) 17,931,684 1.0s 1.2s
Ours (fast, large block) 18,276,476 2.2s 3.1s
Ours (fast, small block) 18,371,604 0.6s 0.7s
OpenJPEG 18,440,016 14.0s 12.0s
JasPer 18,440,076 10.6s 9.1s

(a) (b) (c)

(d) (e) (f)
Fig. 2. A region of an image compressed to 1 bit per pixel. (a)
Original. (b) Proposed method. (c) JPEG 2000. (d) Artificial Bayer
pattern image. (e) Proposed method on (d). (f) JPEG 2000 on (d).

faster than JPEG 2000. Despite the simplicity of our encoding
scheme, it outperforms the EBCOT arithmetic encoder used
in JPEG 2000 for lossless encoding of all grayscale images
tested, and is competitive for color images. Evidently our pro-
posed encoder is superior for luma yet inferior for chroma,
which suggests an avenue for future work tuning for chroma.
Table 2 lists encoding and decoding times for our method on
the large image of cats, showing both context methods and
large block size vs. small block size to take advantage of mul-
tithreading, vs. the OpenJPEG [2] and JasPer [1] JPEG 2000
libraries, running on a dual quad-core 2.4 GHz Intel Xeon
E5620 CPU with hyperthreading. All configurations of our
proposed method are faster than JPEG 2000 on this image
(up to 17 times faster), while still producing a smaller size.
Fig. 2 shows a region of an image compressed to 1 bit per
pixel, comparing our proposed method vs. JPEG 2000 (best
viewed in high resolution electronic format). JPEG 2000
preserves more fine detail, but also has more ringing artifacts,
and introduces problematic artifacts on Bayer pattern data,
for which it is not designed. In future work, we could em-
ploy advanced quantization schemes such as Trellis coding to
further improve quality at low bit rates.

http://www.gfwx.org
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